summaryrefslogtreecommitdiff
path: root/README.rst
diff options
context:
space:
mode:
Diffstat (limited to 'README.rst')
-rw-r--r--README.rst164
1 files changed, 1 insertions, 163 deletions
diff --git a/README.rst b/README.rst
index 0301b24..1fa7f54 100644
--- a/README.rst
+++ b/README.rst
@@ -54,7 +54,7 @@ Actinide requires Python 3.6 or later.
Installation
************
-::
+.. code-block:: bash
$ pip install actinide
$ pip freeze > requirements.txt
@@ -73,165 +73,3 @@ print the result of that evaluation. The environment is persisted from form to
form, to allow interactive definitions.
To exit the REPL, type an end-of-file (Ctrl-D on most OSes, Ctrl-Z on Windows).
-
-******************
-Embedding Actinide
-******************
-
-Actinide is designed to be embedded into larger Python programs. It's possible
-to call into Actinide, either by providing code to be evaluated, or by
-obtaining builtin functions and procedures from Actinide and invoking them.
-
-The ``Session`` class is the basic building block of an Actinide integration.
-Creating a session creates a number of resources associated with Actinide
-evaluation: a symbol table for interning symbols, and an initial top-level
-environment to evaluate code in, pre-populated with the Actinide standard
-library.
-
-Executing Actinide programs in a session consists of two steps: reading the
-program in from a string or an input port, and evaluating the resulting forms.
-The following example illustrates a simple infinite loop:
-
-.. code:: python
-
- import actinide
-
- session = actinide.Session()
- program = session.read('''
- (begin
- ; define the factorial function
- (define (factorial n)
- (fact n 1))
-
- ; define a tail-recursive factorial function
- (define (fact n a)
- (if (= n 1)
- a
- (fact (- n 1) (* n a))))
-
- ; call them both
- (factorial 100))
- ''')
-
- # Compute the factorial of 100
- result = session.eval(program)
-
-As a shorthand for this common sequence of operations, the Session exposes a
-``run`` method:
-
-.. code:: python
-
- print(*session.run('(factorial 5)')) # prints "120"
-
-Callers can inject variables, including new builtin functions, into the initial
-environment using the ``bind``, ``bind_void``, ``bind_fn``, and
-``bind_builtin`` methods of the session.
-
-To bind a simple value, or to manually bind a wrapped builtin, call
-``session.bind``:
-
-.. code:: python
-
- session.bind('var', 5)
- print(*session.run('var')) # prints "5"
-
-To bind a function whose return value should be ignored, call ``bind_void``.
-This will automatically determine the name to bind the function to:
-
-.. code:: python
-
- session.bind_void(print)
- session.run('(print "Hello, world!")') # prints "Hello, world!" using Python's print fn
-
-To bind a function returning one value (most functions), call ``bind_fn``. This
-will automatically determine the name to bind to:
-
-.. code:: python
-
- def example():
- return 5
-
- session.bind_fn(example)
- print(*session.run('(example)')) # prints "5"
-
-Finally, to bind a function returning a tuple of results, call
-``bind_builtin``. This will automatically determine the name to bind to:
-
-.. code:: python
-
- def pair():
- return 1, 2
-
- session.bind_builtin(pair)
- print(*session.run('(pair)')) # prints "1 2"
-
-Actinide functions can return zero, one, or multiple values. As a result, the
-``result`` returned by ``session.eval`` is a tuple, with one value per result.
-
-Actinide can bind Python functions, as well as bound and unbound methods, and
-nearly any other kind of callable. Under the hood, Actinide uses a thin adapter
-layer to map Python return values to Actinide value lists. The ``bind_void``
-helper ultimately calls that module's ``wrap_void`` to wrap the function, and
-``bind_fn`` calls ``wrap_fn``. (Tuple-returning functions do not need to be
-wrapped.) If you prefer to manually bind functions using ``bind``, they must be
-wrapped appropriately. An equivalent set of methods, ``macro_bind``,
-``macro_bind_void``, ``macro_bind_fn``, and ``macro_bind_builtin`` bind values
-to entries in the top-level macro table, instead of the top-level environment,
-and allow extension of the language's syntax.
-
-Finally, Actinide can bind specially-crafted Python modules. If a module
-contains a top-level symbol named ``An`` (for the informal chemical symbol for
-the actinide series), it can be passed to the session's ``bind_module`` method.
-The symbol must be bound to an instance of the ``Registry`` class from the
-``actinide.builtin`` module:
-
-.. code:: python
-
- from actinide.builtin import Registry
- An = Registry()
-
- five = An.bind('five', 5)
-
- @An.void
- def python_print(*args):
- print(*args)
-
- @An.fn
- def bitwise_and(a, b):
- return a & b
-
- @An.builtin
- def two_values():
- return 1, "Two"
-
- # @An.macro_bind, @An.macro_void, @An.macro_fn, and @An.macro_builtin follow
- # the same pattern.
-
-Going the other direction, values can be extracted from bindings in the session
-using the ``get`` method:
-
-.. code:: python
-
- session.run('(define x 8)')
- print(session.get('x')) # prints "8"
-
-If the extracted value is a built-in function or an Actinide procedure, it can
-be invoked like a Python function. However, much like ``eval`` and ``run``,
-Actinide functions returne a tuple of results rather than a single value:
-
-.. code:: python
-
- session.run('''
- (begin
- ; Set a variable
- (define x 5)
-
- ; Define a function that reads the variable
- (define (get-x) x))
- ''')
-
- get_x = session.get('get-x')
- print(*get_x()) # prints "5"
-
-This two-way binding mechanism makes it straightforward to define interfaces
-between Actinide and the target domain.