| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In general:
* If the client can only assume the response is immediately valid (mostly, login creation, where the client cannot monitor the event stream), then 200 Okay, with data describing the server's view of the request.
* If the client can monitor for completion by watching the event stream, then 202 Accepted, with data describing the server's view of the request.
This comes on the heels of a comment I made on Discord:
> hrm
>
> creating a login: 204 No Content, no body
> sending a message: 202 Accepted, no body
> creating a channel: 200 Okay, has a body
>
> past me, what were you on
There wasn't any principled reason for this inconsistency; it happened as the endpoints were written at different times and with different states of mind.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Previously, when a channel (message) was deleted, `hi` would send events to all _connected_ clients to inform them of the deletion, then delete all memory of the channel (message). Any disconnected client, on reconnecting, would not receive the deletion event, and would de-synch with the service. The creation events were also immediately retconned out of the event stream, as well.
With this change, `hi` keeps a record of deleted channels (messages). When replaying events, these records are used to replay the deletion event. After 7 days, the retained data is deleted, both to keep storage under control and to conform to users' expectations that deleted means gone.
To match users' likely intuitions about what deletion does, deleting a channel (message) _does_ immediately delete some of its associated data. Channels' names are blanked, and messages' bodies are also blanked. When the event stream is replayed, the original channel.created (message.sent) event is "tombstoned", with an additional `deleted_at` field to inform clients. The included client does not use this field, at least yet.
The migration is, once again, screamingingly complicated due to sqlite's limited ALTER TABLE … ALTER COLUMN support.
This change also contains capabilities that would allow the API to return 410 Gone for deleted channels or messages, instead of 404. I did experiment with this, but it's tricky to do pervasively, especially since most app-level interfaces return an `Option<Channel>` or `Option<Message>`. Redesigning these to return either `Ok(Channel)` (`Ok(Message)`) or `Err(Error::NotFound)` or `Err(Error::Deleted)` is more work than I wanted to take on for this change, and the utility of 410 Gone responses is not obvious to me. We have other, more pressing API design warts to address.
|
| | |
|
| | |
|
| | |
|
| |
|
|
| |
This will make it much easier to slot in new event types (login events!).
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
| |
The client now takes an initial snapshot from the response to `/api/boot`, then picks up the event stream at the immediately-successive event to the moment the snapshot was taken.
This commit removes the following unused endpoints:
* `/api/channels` (GET)
* `/api/channels/:channel/messages` (GET)
The information therein is now part of the boot response. We can always add 'em back, but I wanted to clear the deck for designing something more capable, for dealing with client needs.
|
| |
|
|
| |
It is deliberate that the expire() functions do not use them. To avoid races, the transactions must be committed before events get sent, in both cases, which makes them structurally pretty different.
|
| |
|
|
|
|
| |
This separates the code that figures out what happened to an entity from the code that represents it to a user, and makes it easier to compute a snapshot at a point in time (for things like bootstrap). It also makes the internal logic a bit easier to follow, since it's easier to tell whether you're working with a point in time or with the whole recorded history.
This hefty.
|
| | |
|
| |
|
|
| |
This is primarily renames and repackagings.
|
| |
|
|
| |
(This is part of a larger reorganization.)
|
| |
|
|
| |
sequence.
|
| |
|
|
| |
Per-channel event sequences were a cute idea, but it made reasoning about event resumption much, much harder (case in point: recovering the order of events in a partially-ordered collection is quadratic, since it's basically graph sort). The minor overhead of a global sequence number is likely tolerable, and this simplifies both the API and the internals.
|
| | |
|
| |
|
|
|
|
|
|
| |
Trying to reliably do expiry mid-request was causing some anomalies:
* Creating a channel with a dup name would fail, then succeed after listing channels.
It was very hard to reason about which operations needed to trigger expiry, to fix this "correctly," so now expiry runs on every request.
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
| |
It now includes events for all channels. Clients are responsible for filtering.
The schema for channel events has changed; it now includes a channel name and ID, in the same format as the sender's name and ID. They also now include a `"type"` field, whose only valid value (as of this writing) is `"message"`.
This is groundwork for delivering message deletion (expiry) events to clients, and notifying clients of channel lifecycle events.
|
| |
|
|
| |
I had no idea `std` included a `matches!` macro, and I feel we're better off using it.
|
| |
|
|
| |
vector-of-sequence-numbers stream resume.
|
| |
|