| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
VAPID is used to authenticate applications to push brokers, as part of the [Web Push] specification. It's notionally optional, but we believe [Apple requires it][apple], and in any case making it impossible to use subscription URLs without the corresponding private key available, and thus harder to impersonate the server, seems like a good security practice regardless.
[Web Push]: https://developer.mozilla.org/en-US/docs/Web/API/Push_API
[apple]: https://developer.apple.com/documentation/usernotifications/sending-web-push-notifications-in-web-apps-and-browsers
There are several implementations of VAPID for Rust:
* [web_push](https://docs.rs/web-push/latest/web_push/) includes an implementation of VAPID but requires callers to provision their own keys. We will likely use this crate for Web Push fulfilment, but we cannot use it for key generation.
* [vapid](https://docs.rs/vapid/latest/vapid/) includes an implementation of VAPID key generation. It delegates to `openssl` to handle cryptographic operations.
* [p256](https://docs.rs/p256/latest/p256/) implements NIST P-256 in Rust. It's maintained by the RustCrypto team, though as of this writing it is largely written by a single contributor. It isn't specifically designed for use with VAPID.
I opted to use p256 for this, as I believe the RustCrypto team are the most likely to produce a correct and secure implementation, and because openssl has consistently left a bad taste in my mouth for years. Because it's a general implementation of the algorithm, I expect that it will require more work for us to adapt it for use with VAPID specifically; I'm willing to chance it and we can swap it out for the vapid crate if it sucks.
This has left me with one area of uncertainty: I'm not actually sure I'm using the right parts of p256. The choice of `ecdsa::SigningKey` over `p256::SecretKey` is based on [the MDN docs] using phrases like "This value is part of a signing key pair generated by your application server, and usable with elliptic curve digital signature (ECDSA), over the P-256 curve." and on [RFC 8292]'s "The 'k' parameter includes an ECDSA public key in uncompressed form that is encoded using base64url encoding. However, we won't be able to test my implementation until we implement some other key parts of Web Push, which are out of scope of this commit.
[the MDN docs]: https://developer.mozilla.org/en-US/docs/Web/API/PushSubscription/options
[RFC 8292]: https://datatracker.ietf.org/doc/html/rfc8292#section-3.2
Following the design used for storing logins and users, VAPID keys are split into a non-synchronized part (consisting of the private key), whose exposure would allow others to impersonate the Pilcrow server, and a synchronized part (consisting of event coordinates and, notionally, the public key), which is non-sensitive and can be safely shared with any user. However, the public key is derived from the stored private key, rather than being stored directly, to minimize redundancy in the stored data.
Following the design used for expiring stale entities, the app checks for and creates, or rotates, its VAPID key using middleware that runs before most API requests. If, at that point, the key is either absent, or more than 30 days old, it is replaced. This imposes a small tax on API request latency, which is used to fund prompt and automatic key rotation without the need for an operator-facing key management interface.
VAPID keys are delivered to clients via the event stream, as laid out in `docs/api/events.md`. There are a few reasons for this, but the big one is that changing the VAPID key would immediately invalidate push subscriptions: we throw away the private key, so we wouldn't be able to publish to them any longer. Clients must replace their push subscriptions in order to resume delivery, and doing so promptly when notified that the key has changed will minimize the gap.
This design is intended to allow for manual key rotation. The key can be rotated "immedately" by emptying the `vapid_key` and `vapid_signing_key` tables (which destroys the rotated kye); the server will generate a new one before it is needed, and will notify clients that the key has been invalidated.
This change includes client support for tracking the current VAPID key. The client doesn't _use_ this information anywhere, yet, but it has it.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The taxonomy is now as follows:
* A _login_ is someone's identity for the purposes of authenticating to the service. Logins are not synchronized, and in fact are not published anywhere in the current API. They have a login ID, a name and a password.
* A _user_ is someone's identity for the purpose of participating in conversations. Users _are_ synchronized, as before. They have a user ID, a name, and a creation instant for the purposes of synchronization.
In practice, a user exists for every login - in fact, users' names are stored in the login table and are joined in, rather than being stored redundantly in the user table. A login ID and its corresponding user ID are always equal, and the user and login ID types support conversion and comparison to facilitate their use in this context.
Tokens are now associated with logins, not users. The currently-acting identity is passed down into app types as a login, not a user, and then resolved to a user where appropriate within the app methods.
As a side effect, the `GET /api/boot` method now returns a `login` key instead of a `user` key. The structure of the nested value is unchanged.
|
| |
|
|
| |
This is the leading edge of a larger storage refactoring, where repo types stop doing things like generating secrets or deciding whether to carry out an operation. To make this work, there is now a `Token` type that holds the complete state of a token, in memory.
|
| |
|
|
|
|
| |
identity token.
This is a small refactoring that's been possible for a while, and we only just noticed.
|
| |
|
|
| |
As with the previous commits, the body was never actually being used.
|
| |
|
|
| |
This API response was always ad-hoc, and the client doesn't use it. To free up some maneuvering room for server refactorings, stop sending it. We can add a response in the future if there's a need.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rust 1.89 added a new warning:
warning: hiding a lifetime that's elided elsewhere is confusing
--> src/setup/repo.rs:4:14
|
4 | fn setup(&mut self) -> Setup;
| ^^^^^^^^^ ----- the same lifetime is hidden here
| |
| the lifetime is elided here
|
= help: the same lifetime is referred to in inconsistent ways, making the signature confusing
help: use `'_` for type paths
|
4 | fn setup(&mut self) -> Setup<'_>;
| ++++
I don't entirely agree with the style advice here, but lifetime elision style is an evolving area in Rust and I'd rather track the Rust team's recommendations than invent my own, so I've added all of them.
|
| |
|
|
| |
This is a **breaking change** for essentially all clients. Thankfully, there's presently just the one, so we don't need to go to much effort to accommoate that; the client is modified in this commit to adapt, users can reload their client, and life will go on.
|
| |
|
|
|
|
| |
I've split this from the schema and API changes because, frankly, it's huge. Annoyingly so. There are no semantic changes in this, it's all symbol changes, but there are a _lot_ of them because the term "channel" leaks all over everything in a service whose primary role is managing messages sent to channels (now, conversations).
I found a buggy test while working on this! It's not fixed in this commit, because it felt mean to hide a real change in the middle of this much chaff.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
These filters are meant to be used with, respectively, `Iterator::filter_map` and `StreamExt::filter_map`. The two operations are conceptually the same - they pass an item from the underlying sequence to a function that returns an option, drops the values for which the function returns `None`, and yields the value inside of `Some` in the resulting sequence.
However, `Iterator::filter_map` takes a function from the iterator elements to `Option<T>`. `StreamExt::filter_map` takes a function from the iterator elements to _a `Future` whose output is `Option<T>`_. As such, you can't easily use functions designed for one use case, for the other. You need an adapter - conventionally, `futures::ready`, if you have a non-async function and need an async one.
This provides two sets of sequence filters:
* `crate::test::fixtures::event` contains functions which return `Option` directly, and which are intended for use with `Iterator::filter_map`.
* `crate::test::fixtures::event::stream` contains lifted versions that return a `Future`, and which are intended for use with `StreamExt::filter_map`.
The lifting is done purely manually. I spent a lot of time writing clever-er versions before deciding on this; those were fun to write, but hell to read and not meaningfully better, and this is test support code, so we want it to be dumb and obvious. Complexity for the sake of intellectual satisfaction is a huge antifeature in this context.
|
| |
|
|
|
|
| |
Each domain module that exposes handlers does so through a `handlers` child module, ideally as a top-level symbol that can be plugged directly into Axum's `MethodRouter`. Modules could make exceptions to this - kill the doctrinaire inside yourself, after all - but none of the API modules that actually exist need such exceptions, and consistency is useful.
The related details of request types, URL types, response types, errors, &c &c are then organized into modules under `handlers`, along with their respective tests.
|
| |
|
|
|
|
|
|
| |
HTTP routes are now defined in a single, unified module, pulling them out of the topical modules they were formerly part of.
This is intended to improve the navigability of the codebase. Previously, finding the handler corresponding to a specific endpoint required prior familiarity, though in practice you could usually guess from topic area. Now, all routes are defined in `crate::routes`.
Other than changing visibility, I've avoided making changes to the handlers at the ends of those routes.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A heartbeat is an event that the server synthesizes any time an event stream has been idle for longer than some timeout. They allow clients to detect disconnection and network problems, which would otherwise go unnoticed because event streams are a one-way channel. Most network problems only become clear when the offended party tries to _send_ something, and subscribing to an event stream only sends something during the request phase.
Technically, Pilcrow has always sent these, since we started using Axum's SSE support: it defaults to sending a dummy event after 15 seconds (consisting of `":\n\n"`, which is then ignored). I've built Pilcrow's heartbeat support out of that, by customizing the event sent back. The results _mostly_ look like existing events, but there are two key differences:
* Heartbeats don't have `id` fields in the event stream. They're synthetic, and they don't participate in either the "resume at" sequence management, or the last-event-id header-based resumption management.
* Heartbeats have an `event` but no `type` field in the message body. There are no subtypes.
To make it less likely that clients will race with the server on expiring timeouts, heartbeats are sent about five seconds early. In this change, heartbeats are due after 20 seconds, but are sent after 15. If it takes longer than five seconds for a heartbeat to arrive, a client can and should treat that as a network problem and reconnect, but I'd really like to avoid that happening over differences smaller than a second, so I've left a margin.
I originally sketched this out in conversation with @wlonk as having each event carry a deadline for the next one. I ultimately opted not to do that for a few reasons. First, Axum makes it hard - the built-in keep-alive support only works with a static event, and cannot make dynamic ones whose payloads might vary (for example if the deadline is variable). Second, it's complex, to no apparent gain, and adds deadline information to _every_ event type.
This implementation, instead, sends deadline information as part of boot, as a fixed interval in seconds. Clients are responsible for working out deadlines based on message arrivals. This is fine; heartbeat-based connection management is best effort at the best of times, so a few milliseconds of slop in either direction won't hurt anything.
The existing client ignores these events entirely, which is convenient.
The new heartbeat event type is defined alongside the main event type, to make it less likely that we'll inadvertently make changes to one but not the other. We can still do so advertently, I just don't want it to be an accident.
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
| |
There are a couple of migration suggestions from `cargo fix --edition` that I have deliberately skipped, which are intended to make sure that the changes to `if let` scoping don't bite us. They don't, I'm pretty sure, and if I turn out to be wrong, I'd rather fix the scoping issues (as they arise) than use `match` (`cargo fix --edition`'s suggestion).
This change also includes a bulk reformat and a clippy cleanup.
NOTA BENE: As this requires a new Rust toolchain, you'll need to update Rust (`rustup update`, normally) or the server won't build. This also applies to the Debian builder Docker image; it'll need to be rebuilt (from scratch, pulling its base image again) as well.
|
| | |
|
| |
|
|
| |
This is an inconsequential change for actual clients, since "resume from the beginning" was never a preferred mode of operation, and it simplifies some internals. It should also mean we get better query plans where `coalesce(cond, true)` was previously being used.
|
| |
|
|
| |
The protocol here re-checks the caller's password, as a "I left myself logged in" anti-pranking check.
|
| | |
|
| |
|
|
| |
This required a re-think of the `.immediately()` combinator, to generalize it to cases where a message is _not_ expected. That (more or less immediately) suggested some mixed combinators, particularly for stream futures (futures of `Option<T>`).
|
| | |
|
| |
|
|
| |
This also found a bug! No live event was being emitted during invite accept. The only way to find out about invites was to reconnect.
|
| |
|
|
|
|
|
|
|
| |
* A `cookie::Identity` (`IdentityCookie`) is a specialized CookieJar for working with identities.
* An `Identity` is a token/login pair.
I hope for this to be a bit more legible.
In service of this, `Login` is no longer extractable. You have to get an identity.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Canonicalization does two things:
* It prevents duplicate names that differ only by case or only by normalization/encoding sequence; and
* It makes certain name-based comparisons "case-insensitive" (generalizing via Unicode's case-folding rules).
This change is complicated, as it means that every name now needs to be stored in two forms. Unfortunately, this is _very likely_ a breaking schema change. The migrations in this commit perform a best-effort attempt to canonicalize existing channel or login names, but it's likely any existing channels or logins with non-ASCII characters will not be canonicalize correctly. Since clients look at all channel names and all login names on boot, and since the code in this commit verifies canonicalization when reading from the database, this will effectively make the server un-usuable until any incorrectly-canonicalized values are either manually canonicalized, or removed
It might be possible to do better with [the `icu` sqlite3 extension][icu], but (a) I'm not convinced of that and (b) this commit is already huge; adding database extension support would make it far larger.
[icu]: https://sqlite.org/src/dir/ext/icu
For some references on why it's worth storing usernames this way, see <https://www.b-list.org/weblog/2018/nov/26/case/> and the refernced talk, as well as <https://www.b-list.org/weblog/2018/feb/11/usernames/>. Bennett's treatment of this issue is, to my eye, much more readable than the referenced Unicode technical reports, and I'm inclined to trust his opinion given that he maintains a widely-used, internet-facing user registration library for Django.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Previously, when a channel (message) was deleted, `hi` would send events to all _connected_ clients to inform them of the deletion, then delete all memory of the channel (message). Any disconnected client, on reconnecting, would not receive the deletion event, and would de-synch with the service. The creation events were also immediately retconned out of the event stream, as well.
With this change, `hi` keeps a record of deleted channels (messages). When replaying events, these records are used to replay the deletion event. After 7 days, the retained data is deleted, both to keep storage under control and to conform to users' expectations that deleted means gone.
To match users' likely intuitions about what deletion does, deleting a channel (message) _does_ immediately delete some of its associated data. Channels' names are blanked, and messages' bodies are also blanked. When the event stream is replayed, the original channel.created (message.sent) event is "tombstoned", with an additional `deleted_at` field to inform clients. The included client does not use this field, at least yet.
The migration is, once again, screamingingly complicated due to sqlite's limited ALTER TABLE … ALTER COLUMN support.
This change also contains capabilities that would allow the API to return 410 Gone for deleted channels or messages, instead of 404. I did experiment with this, but it's tricky to do pervasively, especially since most app-level interfaces return an `Option<Channel>` or `Option<Message>`. Redesigning these to return either `Ok(Channel)` (`Ok(Message)`) or `Err(Error::NotFound)` or `Err(Error::Deleted)` is more work than I wanted to take on for this change, and the utility of 410 Gone responses is not obvious to me. We have other, more pressing API design warts to address.
|
| | |
|
| | |
|
| |
|
|
| |
This will make it much easier to slot in new event types (login events!).
|
| | |
|
| | |
|
| |
|
|
| |
It is deliberate that the expire() functions do not use them. To avoid races, the transactions must be committed before events get sent, in both cases, which makes them structurally pretty different.
|
| |
|
|
|
|
| |
This separates the code that figures out what happened to an entity from the code that represents it to a user, and makes it easier to compute a snapshot at a point in time (for things like bootstrap). It also makes the internal logic a bit easier to follow, since it's easier to tell whether you're working with a point in time or with the whole recorded history.
This hefty.
|
| | |
|
| |
|
|
| |
This helped me discover an organizational scheme I like more.
|
| | |
|
|
|
This is primarily renames and repackagings.
|