| |
|
|
|
|
|
|
| |
There are a couple of migration suggestions from `cargo fix --edition` that I have deliberately skipped, which are intended to make sure that the changes to `if let` scoping don't bite us. They don't, I'm pretty sure, and if I turn out to be wrong, I'd rather fix the scoping issues (as they arise) than use `match` (`cargo fix --edition`'s suggestion).
This change also includes a bulk reformat and a clippy cleanup.
NOTA BENE: As this requires a new Rust toolchain, you'll need to update Rust (`rustup update`, normally) or the server won't build. This also applies to the Debian builder Docker image; it'll need to be rebuilt (from scratch, pulling its base image again) as well.
|
|
|
Nasty design corner. Logins need to be created in three places:
1. In tests, using app.logins().create(…);
2. On initial setup, using app.setup().initial(…); and
3. When accepting invites, using app.invites().accept(…).
These three places do the same thing with respect to logins, but also do a varying mix of other things. Testing is the simplest and _only_ creates a login. Initial setup and invite acceptance both issue a token for the newly-created login. Accepting an invite also invalidates the invite. Previously, those three functions have been copy-pasted variations on a theme. Now that we have validation, the copy-paste approach is no longer tenable; it will become increasingly hard to ensure that the three functions (plus any future functions) remain in synch.
To accommodate the variations while consolidating login creation, I've added a typestate-based state machine, which is driven by method calls:
* A creation attempt begins with `let create = Create::begin()`. This always succeeds; it packages up arguments used in later steps, but does nothing else.
* A creation attempt can be validated using `let validated = create.validate()?`. This may fail. Input validation and password hashing are carried out at this stage, making it potentially expensive.
* A validated attempt can be stored in the DB, using `let stored = validated.store(&mut tx).await?`. This may fail. The login will be written to the DB; the caller is responsible for transaction demarcation, to allow other things to take place in the same transaction.
* A fully-stored attempt can be used to publish events, using `let login = stored.publish(self.events)`. This always succeeds, and unwraps the state machine to its final product (a `login::History`).
|