| Commit message (Collapse) | Author | Age |
| |
|
|
| |
As with the `Setup` component, I've generalized the associated middleware across anything that can provide a `Tokens`, where possible.
|
| | |
|
| | |
|
| |
|
|
|
|
| |
This conversion, from an iterator of type-specific events (say, `user::Event` or `message::Event`), into a `Vec<event::Event>`, is prevasive, and it needs to be done each time. Having Broadcaster expose a support method for this cuts down on the repetition, at the cost of a slightly alarming amount of type-system nonsense in `broadcast_from`.
Historical footnote: the internal message structure is a Vec and not an individual message so that bulk operations, like expiring channels and messages, won't disconnect everyone if they happen to dispatch more than sixteen messages (current queue depth limit) at once. We trade allocation and memory pressure for keeping the connections alive. _Most_ event publishing is an iterator of one item, so the Vec allocation is redundant.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The taxonomy is now as follows:
* A _login_ is someone's identity for the purposes of authenticating to the service. Logins are not synchronized, and in fact are not published anywhere in the current API. They have a login ID, a name and a password.
* A _user_ is someone's identity for the purpose of participating in conversations. Users _are_ synchronized, as before. They have a user ID, a name, and a creation instant for the purposes of synchronization.
In practice, a user exists for every login - in fact, users' names are stored in the login table and are joined in, rather than being stored redundantly in the user table. A login ID and its corresponding user ID are always equal, and the user and login ID types support conversion and comparison to facilitate their use in this context.
Tokens are now associated with logins, not users. The currently-acting identity is passed down into app types as a login, not a user, and then resolved to a user where appropriate within the app methods.
As a side effect, the `GET /api/boot` method now returns a `login` key instead of a `user` key. The structure of the nested value is unchanged.
|
| | |
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
| |
There are a couple of migration suggestions from `cargo fix --edition` that I have deliberately skipped, which are intended to make sure that the changes to `if let` scoping don't bite us. They don't, I'm pretty sure, and if I turn out to be wrong, I'd rather fix the scoping issues (as they arise) than use `match` (`cargo fix --edition`'s suggestion).
This change also includes a bulk reformat and a clippy cleanup.
NOTA BENE: As this requires a new Rust toolchain, you'll need to update Rust (`rustup update`, normally) or the server won't build. This also applies to the Debian builder Docker image; it'll need to be rebuilt (from scratch, pulling its base image again) as well.
|
| |
|
|
| |
This is an inconsequential change for actual clients, since "resume from the beginning" was never a preferred mode of operation, and it simplifies some internals. It should also mean we get better query plans where `coalesce(cond, true)` was previously being used.
|
| |
|
|
| |
This utility was needed to support a database migration with existing data. I have it on good authority that no further databases exist that are in the state that made this tool necessary.
|
| |
|
|
| |
The protocol here re-checks the caller's password, as a "I left myself logged in" anti-pranking check.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Nasty design corner. Logins need to be created in three places:
1. In tests, using app.logins().create(…);
2. On initial setup, using app.setup().initial(…); and
3. When accepting invites, using app.invites().accept(…).
These three places do the same thing with respect to logins, but also do a varying mix of other things. Testing is the simplest and _only_ creates a login. Initial setup and invite acceptance both issue a token for the newly-created login. Accepting an invite also invalidates the invite. Previously, those three functions have been copy-pasted variations on a theme. Now that we have validation, the copy-paste approach is no longer tenable; it will become increasingly hard to ensure that the three functions (plus any future functions) remain in synch.
To accommodate the variations while consolidating login creation, I've added a typestate-based state machine, which is driven by method calls:
* A creation attempt begins with `let create = Create::begin()`. This always succeeds; it packages up arguments used in later steps, but does nothing else.
* A creation attempt can be validated using `let validated = create.validate()?`. This may fail. Input validation and password hashing are carried out at this stage, making it potentially expensive.
* A validated attempt can be stored in the DB, using `let stored = validated.store(&mut tx).await?`. This may fail. The login will be written to the DB; the caller is responsible for transaction demarcation, to allow other things to take place in the same transaction.
* A fully-stored attempt can be used to publish events, using `let login = stored.publish(self.events)`. This always succeeds, and unwraps the state machine to its final product (a `login::History`).
|
| |
|
|
|
|
|
|
| |
There's no good reason to use an empty string as your login name, or to use one so long as to annoy others. Names beginning or ending with whitespace, or containing runs of whitespace, are also a technical problem, so they're also prohibited.
This change does not implement [UTS #39], as I haven't yet fully understood how to do so.
[UTS #39]: https://www.unicode.org/reports/tr39/
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
I've exempted inserts (they never scan in the first place), queries on `event_sequence` (at most one row), and the coalesce()s used for event replay (for now; these are obviously a performance risk area and need addressing).
Method:
```
find .sqlx -name 'query-*.json' -exec jq -r '"explain query plan " + .query + ";"' {} + > explain.sql
```
Then go query by query through the resulting file.
|
| |
|
|
|
|
|
|
|
| |
* A `cookie::Identity` (`IdentityCookie`) is a specialized CookieJar for working with identities.
* An `Identity` is a token/login pair.
I hope for this to be a bit more legible.
In service of this, `Login` is no longer extractable. You have to get an identity.
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Canonicalization does two things:
* It prevents duplicate names that differ only by case or only by normalization/encoding sequence; and
* It makes certain name-based comparisons "case-insensitive" (generalizing via Unicode's case-folding rules).
This change is complicated, as it means that every name now needs to be stored in two forms. Unfortunately, this is _very likely_ a breaking schema change. The migrations in this commit perform a best-effort attempt to canonicalize existing channel or login names, but it's likely any existing channels or logins with non-ASCII characters will not be canonicalize correctly. Since clients look at all channel names and all login names on boot, and since the code in this commit verifies canonicalization when reading from the database, this will effectively make the server un-usuable until any incorrectly-canonicalized values are either manually canonicalized, or removed
It might be possible to do better with [the `icu` sqlite3 extension][icu], but (a) I'm not convinced of that and (b) this commit is already huge; adding database extension support would make it far larger.
[icu]: https://sqlite.org/src/dir/ext/icu
For some references on why it's worth storing usernames this way, see <https://www.b-list.org/weblog/2018/nov/26/case/> and the refernced talk, as well as <https://www.b-list.org/weblog/2018/feb/11/usernames/>. Bennett's treatment of this issue is, to my eye, much more readable than the referenced Unicode technical reports, and I'm inclined to trust his opinion given that he maintains a widely-used, internet-facing user registration library for Django.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This normalizes the following values:
* login names
* passwords
* channel names
* message bodies, because why not
The goal here is to have a canonical representation of these values, so that, for example, the service does not inadvertently host two channels whose names are semantically identical but differ in the specifics of how diacritics are encoded, or two users whose names are identical.
Normalization is done on input from the wire, using Serde hooks, and when reading from the database. The `crate::nfc::String` type implements these normalizations (as well as normalizing whenever converted from a `std::string::String` generally).
This change does not cover:
* Trying to cope with passwords that were created as non-normalized strings, which are now non-verifiable as all the paths to verify passwords normalize the input.
* Trying to ensure that non-normalized data in the database compares reasonably to normalized data. Fortunately, we don't _do_ very many string comparisons (I think only login names), so this isn't a huge deal at this stage. Login names will probably have to Get Fixed later on, when we figure out how to handle case folding for login name verification.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In general:
* If the client can only assume the response is immediately valid (mostly, login creation, where the client cannot monitor the event stream), then 200 Okay, with data describing the server's view of the request.
* If the client can monitor for completion by watching the event stream, then 202 Accepted, with data describing the server's view of the request.
This comes on the heels of a comment I made on Discord:
> hrm
>
> creating a login: 204 No Content, no body
> sending a message: 202 Accepted, no body
> creating a channel: 200 Okay, has a body
>
> past me, what were you on
There wasn't any principled reason for this inconsistency; it happened as the endpoints were written at different times and with different states of mind.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
Previously, when a channel (message) was deleted, `hi` would send events to all _connected_ clients to inform them of the deletion, then delete all memory of the channel (message). Any disconnected client, on reconnecting, would not receive the deletion event, and would de-synch with the service. The creation events were also immediately retconned out of the event stream, as well.
With this change, `hi` keeps a record of deleted channels (messages). When replaying events, these records are used to replay the deletion event. After 7 days, the retained data is deleted, both to keep storage under control and to conform to users' expectations that deleted means gone.
To match users' likely intuitions about what deletion does, deleting a channel (message) _does_ immediately delete some of its associated data. Channels' names are blanked, and messages' bodies are also blanked. When the event stream is replayed, the original channel.created (message.sent) event is "tombstoned", with an additional `deleted_at` field to inform clients. The included client does not use this field, at least yet.
The migration is, once again, screamingingly complicated due to sqlite's limited ALTER TABLE … ALTER COLUMN support.
This change also contains capabilities that would allow the API to return 410 Gone for deleted channels or messages, instead of 404. I did experiment with this, but it's tricky to do pervasively, especially since most app-level interfaces return an `Option<Channel>` or `Option<Message>`. Redesigning these to return either `Ok(Channel)` (`Ok(Message)`) or `Err(Error::NotFound)` or `Err(Error::Deleted)` is more work than I wanted to take on for this change, and the utility of 410 Gone responses is not obvious to me. We have other, more pressing API design warts to address.
|
| | |
|
| | |
|
| | |
|
| |
|
|
| |
This is a little excessive, as PasswordHash (which StoredHash converts to) _does_ derive Debug and exposes the hash, but I'll feel better if the hash never ends up in logs.
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
| |
The client now takes an initial snapshot from the response to `/api/boot`, then picks up the event stream at the immediately-successive event to the moment the snapshot was taken.
This commit removes the following unused endpoints:
* `/api/channels` (GET)
* `/api/channels/:channel/messages` (GET)
The information therein is now part of the boot response. We can always add 'em back, but I wanted to clear the deck for designing something more capable, for dealing with client needs.
|
| |
|
|
| |
This helped me discover an organizational scheme I like more.
|
| | |
|
| |
|
|
| |
This is primarily renames and repackagings.
|
| |
|
|
| |
(This is part of a larger reorganization.)
|
| |
|
|
| |
sequence.
|
| | |
|
| |
|
|
|
|
| |
This (a) reduces the amount of passing secrets around that's needed, and (b) allows tests to log out in a more straightforwards manner.
Ish. The fixtures are a mess, but so is the nomenclature. Fix the latter and the former will probably follow.
|
| |
|
|
|
|
|
|
| |
expires.
When tokens are revoked (logout or expiry), the server now publishes an internal event via the new `logins` event broadcaster. These events are used to guard the `/api/events` stream. When a token revocation event arrives for the token used to subscribe to the stream, the stream is cut short, disconnecting the client.
In service of this, tokens now have IDs, which are non-confidential values that can be used to discuss tokens without their secrets being passed around unnecessarily. These IDs are not (at this time) exposed to clients, but they could be.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
The following values are considered confidential, and should never be logged, even by accident:
* `Password`, which is a durable bearer token for a specific Login;
* `IdentitySecret`, which is an ephemeral but potentially long-lived bearer token for a specific Login; or
* `IdentityToken`, which may hold cookies containing an `IdentitySecret`.
These values are now wrapped in types whose `Debug` impls output opaque values, so that they can be included in structs that `#[derive(Debug)]` without requiring any additional care. The wrappers also avoid implementing `Display`, to prevent inadvertent `to_string()`s.
We don't bother obfuscating `IdentitySecret`s in memory or in the `.hi` database. There's no point: we'd also need to store the information needed to de-obfuscate them, and they can be freely invalidated and replaced by blanking that table and asking everyone to log in again. Passwords _are_ obfuscated for storage, as they're intended to be durable.
|
| | |
|
| |
|
|
| |
This change makes the identity cookie available throughout `/api`.
|
| |
|
|
| |
I had no idea `std` included a `matches!` macro, and I feel we're better off using it.
|
| |
|
|
| |
This'll catch style issues, mostly.
|
| |
|
|
|
|
|
|
| |
This silences some `-Wclippy::pedantic` warning, and it's just a good thing to do.
I've made the choice to have the docs comment face programmers, and to provide `hi --help` and `hi -h` content via Clap attributes instead of inferring it from the docs comment.
Internal (private) "rustdoc" comments have been converted to regular comments until I learn how to write better rustdoc.
|
| | |
|
| | |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
This API structure fell out of a conversation with Kit. Described loosely:
kit: ok
kit: Here's what I'm picturing in a client
kit: list channels, make-new-channel, zero to one active channels, post-to-active.
kit: login/sign-up, logout
owen: you will likely also want "am I logged in" here
kit: sure, whoami
|
| |
|
|
|
|
|
|
|
|
| |
This is intended to manage storage growth. A community with broadly steady traffic will now reach a steady state (ish) where the amount of storage in use stays within a steady band.
The 90 day threshold is a spitball; this should be made configurable for the community's needs.
I've also hoisted expiry out into the `app` classes, to reduce the amount of non-database work repo types are doing. This should make it easier to make expiry configurable later on.
Includes incidental cleanup and style changes.
|
| | |
|
| | |
|