1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
|
use chrono::TimeDelta;
use futures::{
Stream, future,
stream::{self, StreamExt as _},
};
use sqlx::sqlite::SqlitePool;
use super::{
Broadcaster, Event as TokenEvent, Id, Secret,
repo::{self, Provider as _, auth::Provider as _},
};
use crate::{
clock::DateTime,
db::NotFound as _,
name::{self, Name},
user::{Password, User, repo::Provider as _},
};
pub struct Tokens<'a> {
db: &'a SqlitePool,
token_events: &'a Broadcaster,
}
impl<'a> Tokens<'a> {
pub const fn new(db: &'a SqlitePool, token_events: &'a Broadcaster) -> Self {
Self { db, token_events }
}
pub async fn login(
&self,
name: &Name,
password: &Password,
login_at: &DateTime,
) -> Result<(User, Secret), LoginError> {
let mut tx = self.db.begin().await?;
let (login, stored_hash) = tx
.auth()
.for_name(name)
.await
.optional()?
.ok_or(LoginError::Rejected)?;
// Split the transaction here to avoid holding the tx open (potentially blocking
// other writes) while we do the fairly expensive task of verifying the
// password. It's okay if the token issuance transaction happens some notional
// amount of time after retrieving the login, as inserting the token will fail
// if the account is deleted during that time.
tx.commit().await?;
let snapshot = login.as_snapshot().ok_or(LoginError::Rejected)?;
let token = if stored_hash.verify(password)? {
let mut tx = self.db.begin().await?;
let token = tx.tokens().issue(&login, login_at).await?;
tx.commit().await?;
token
} else {
Err(LoginError::Rejected)?
};
Ok((snapshot, token))
}
pub async fn change_password(
&self,
login: &User,
password: &Password,
to: &Password,
changed_at: &DateTime,
) -> Result<(User, Secret), LoginError> {
let mut tx = self.db.begin().await?;
let (login, stored_hash) = tx
.auth()
.for_login(login)
.await
.optional()?
.ok_or(LoginError::Rejected)?;
// Split the transaction here to avoid holding the tx open (potentially blocking
// other writes) while we do the fairly expensive task of verifying the
// password. It's okay if the token issuance transaction happens some notional
// amount of time after retrieving the login, as inserting the token will fail
// if the account is deleted during that time.
tx.commit().await?;
if !stored_hash.verify(password)? {
return Err(LoginError::Rejected);
}
let snapshot = login.as_snapshot().ok_or(LoginError::Rejected)?;
let to_hash = to.hash()?;
let mut tx = self.db.begin().await?;
let tokens = tx.tokens().revoke_all(&login).await?;
tx.users().set_password(&login, &to_hash).await?;
let secret = tx.tokens().issue(&login, changed_at).await?;
tx.commit().await?;
for event in tokens.into_iter().map(TokenEvent::Revoked) {
self.token_events.broadcast(event);
}
Ok((snapshot, secret))
}
pub async fn validate(
&self,
secret: &Secret,
used_at: &DateTime,
) -> Result<(Id, User), ValidateError> {
let mut tx = self.db.begin().await?;
let (token, login) = tx
.tokens()
.validate(secret, used_at)
.await
.not_found(|| ValidateError::InvalidToken)?;
tx.commit().await?;
let login = login.as_snapshot().ok_or(ValidateError::LoginDeleted)?;
Ok((token, login))
}
pub async fn limit_stream<S, E>(
&self,
token: Id,
events: S,
) -> Result<impl Stream<Item = E> + std::fmt::Debug + use<S, E>, ValidateError>
where
S: Stream<Item = E> + std::fmt::Debug,
E: std::fmt::Debug,
{
// Subscribe, first.
let token_events = self.token_events.subscribe();
// Check that the token is valid at this point in time, second. If it is, then
// any future revocations will appear in the subscription. If not, bail now.
//
// It's possible, otherwise, to get to this point with a token that _was_ valid
// at the start of the request, but which was invalided _before_ the
// `subscribe()` call. In that case, the corresponding revocation event will
// simply be missed, since the `token_events` stream subscribed after the fact.
// This check cancels guarding the stream here.
//
// Yes, this is a weird niche edge case. Most things don't double-check, because
// they aren't expected to run long enough for the token's revocation to
// matter. Supervising a stream, on the other hand, will run for a
// _long_ time; if we miss the race here, we'll never actually carry out the
// supervision.
let mut tx = self.db.begin().await?;
tx.tokens()
.require(&token)
.await
.not_found(|| ValidateError::InvalidToken)?;
tx.commit().await?;
// Then construct the guarded stream. First, project both streams into
// `GuardedEvent`.
let token_events = token_events
.filter(move |event| {
future::ready(matches!(event, TokenEvent::Revoked(id) if id == &token))
})
.map(|_| GuardedEvent::TokenRevoked);
let events = events.map(|event| GuardedEvent::Event(event));
// Merge the two streams, then unproject them, stopping at
// `GuardedEvent::TokenRevoked`.
let stream = stream::select(token_events, events).scan((), |(), event| {
future::ready(match event {
GuardedEvent::Event(event) => Some(event),
GuardedEvent::TokenRevoked => None,
})
});
Ok(stream)
}
pub async fn expire(&self, relative_to: &DateTime) -> Result<(), sqlx::Error> {
// Somewhat arbitrarily, expire after 7 days.
let expire_at = relative_to.to_owned() - TimeDelta::days(7);
let mut tx = self.db.begin().await?;
let tokens = tx.tokens().expire(&expire_at).await?;
tx.commit().await?;
for event in tokens.into_iter().map(TokenEvent::Revoked) {
self.token_events.broadcast(event);
}
Ok(())
}
pub async fn logout(&self, token: &Id) -> Result<(), ValidateError> {
let mut tx = self.db.begin().await?;
tx.tokens().revoke(token).await?;
tx.commit().await?;
self.token_events
.broadcast(TokenEvent::Revoked(token.clone()));
Ok(())
}
}
#[derive(Debug, thiserror::Error)]
pub enum LoginError {
#[error("invalid login")]
Rejected,
#[error(transparent)]
Database(#[from] sqlx::Error),
#[error(transparent)]
Name(#[from] name::Error),
#[error(transparent)]
PasswordHash(#[from] password_hash::Error),
}
impl From<repo::auth::LoadError> for LoginError {
fn from(error: repo::auth::LoadError) -> Self {
use repo::auth::LoadError;
match error {
LoadError::Database(error) => error.into(),
LoadError::Name(error) => error.into(),
}
}
}
#[derive(Debug, thiserror::Error)]
pub enum ValidateError {
#[error("invalid token")]
InvalidToken,
#[error("user deleted")]
LoginDeleted,
#[error(transparent)]
Database(#[from] sqlx::Error),
#[error(transparent)]
Name(#[from] name::Error),
}
impl From<repo::LoadError> for ValidateError {
fn from(error: repo::LoadError) -> Self {
match error {
repo::LoadError::Database(error) => error.into(),
repo::LoadError::Name(error) => error.into(),
}
}
}
#[derive(Debug)]
enum GuardedEvent<E> {
TokenRevoked,
Event(E),
}
|