1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
use std::collections::{hash_map::Entry, HashMap};
use std::sync::{Arc, Mutex, MutexGuard};
use futures::{
future,
stream::{self, StreamExt as _, TryStreamExt as _},
TryStream,
};
use sqlx::sqlite::SqlitePool;
use tokio::sync::broadcast::{channel, Sender};
use tokio_stream::wrappers::BroadcastStream;
use super::repo::{
channels::{Id as ChannelId, Provider as _},
messages::{BroadcastMessage, Provider as _},
};
use crate::{clock::DateTime, error::BoxedError, login::repo::logins::Login};
pub struct Channels<'a> {
db: &'a SqlitePool,
broadcaster: &'a Broadcaster,
}
impl<'a> Channels<'a> {
pub const fn new(db: &'a SqlitePool, broadcaster: &'a Broadcaster) -> Self {
Self { db, broadcaster }
}
pub async fn create(&self, name: &str) -> Result<(), BoxedError> {
let mut tx = self.db.begin().await?;
let channel = tx.channels().create(name).await?;
self.broadcaster.register_channel(&channel);
tx.commit().await?;
Ok(())
}
pub async fn send(
&self,
login: &Login,
channel: &ChannelId,
body: &str,
sent_at: &DateTime,
) -> Result<(), BoxedError> {
let mut tx = self.db.begin().await?;
let message = tx
.messages()
.create(&login.id, channel, body, sent_at)
.await?;
tx.commit().await?;
self.broadcaster.broadcast(channel, message);
Ok(())
}
pub async fn events(
&self,
channel: &ChannelId,
resume_at: Option<&DateTime>,
) -> Result<impl TryStream<Ok = BroadcastMessage, Error = BoxedError>, BoxedError> {
fn skip_stale<E>(
resume_at: Option<&DateTime>,
) -> impl for<'m> FnMut(&'m BroadcastMessage) -> future::Ready<Result<bool, E>> {
let resume_at = resume_at.cloned();
move |msg| {
future::ready(Ok(match resume_at {
None => false,
Some(resume_at) => msg.sent_at <= resume_at,
}))
}
}
let live_messages = self
.broadcaster
.listen(channel)
.map_err(BoxedError::from)
.try_skip_while(skip_stale(resume_at));
let mut tx = self.db.begin().await?;
let stored_messages = tx.messages().for_replay(channel, resume_at).await?;
tx.commit().await?;
let stored_messages = stream::iter(stored_messages).map(Ok);
Ok(stored_messages.chain(live_messages))
}
}
// Clones will share the same senders collection.
#[derive(Clone)]
pub struct Broadcaster {
// The use of std::sync::Mutex, and not tokio::sync::Mutex, follows Tokio's
// own advice: <https://tokio.rs/tokio/tutorial/shared-state>. Methods that
// lock it must be sync.
senders: Arc<Mutex<HashMap<ChannelId, Sender<BroadcastMessage>>>>,
}
impl Broadcaster {
pub async fn from_database(db: &SqlitePool) -> Result<Self, BoxedError> {
let mut tx = db.begin().await?;
let channels = tx.channels().all().await?;
tx.commit().await?;
let channels = channels.iter().map(|c| &c.id);
let broadcaster = Self::new(channels);
Ok(broadcaster)
}
fn new<'i>(channels: impl IntoIterator<Item = &'i ChannelId>) -> Self {
let senders: HashMap<_, _> = channels
.into_iter()
.cloned()
.map(|id| (id, Self::make_sender()))
.collect();
Self {
senders: Arc::new(Mutex::new(senders)),
}
}
// panic: if ``channel`` is already registered.
pub fn register_channel(&self, channel: &ChannelId) {
match self.senders().entry(channel.clone()) {
// This ever happening indicates a serious logic error.
Entry::Occupied(_) => panic!("duplicate channel registration for channel {channel}"),
Entry::Vacant(entry) => {
entry.insert(Self::make_sender());
}
}
}
// panic: if ``channel`` has not been previously registered, and was not
// part of the initial set of channels.
pub fn broadcast(&self, channel: &ChannelId, message: BroadcastMessage) {
let tx = self.sender(channel);
// Per the Tokio docs, the returned error is only used to indicate that
// there are no receivers. In this use case, that's fine; a lack of
// listening consumers (chat clients) when a message is sent isn't an
// error.
let _ = tx.send(message);
}
// panic: if ``channel`` has not been previously registered, and was not
// part of the initial set of channels.
pub fn listen(&self, channel: &ChannelId) -> BroadcastStream<BroadcastMessage> {
let rx = self.sender(channel).subscribe();
BroadcastStream::from(rx)
}
// panic: if ``channel`` has not been previously registered, and was not
// part of the initial set of channels.
fn sender(&self, channel: &ChannelId) -> Sender<BroadcastMessage> {
self.senders()[channel].clone()
}
fn senders(&self) -> MutexGuard<HashMap<ChannelId, Sender<BroadcastMessage>>> {
self.senders.lock().unwrap() // propagate panics when mutex is poisoned
}
fn make_sender() -> Sender<BroadcastMessage> {
// Queue depth of 16 chosen entirely arbitrarily. Don't read too much
// into it.
let (tx, _) = channel(16);
tx
}
}
|